منابع مشابه
On Cohen-Macaulay rings
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
متن کاملSome remarks on generalized Cohen-MacAulay rings
We consider the possibility of characterizing Buchsbaum and some special generalized Cohen-Macaulay rings by systems of parameters having certain properties of regular sequences. As an application, we give a bound on Castelnuovo-Mumford regularity of so-called (k, d)-Buchsbaum graded Kalgebras.
متن کامل0 on Cohen - Macaulay Rings of Invariants
We investigate the transfer of the Cohen-Macaulay property from a commutative ring to a subring of invariants under the action of a finite group. Our point of view is ring theoretic and not a priori tailored to a particular type of group action. As an illustration, we briefly discuss the special case of multiplicative actions, that is, actions on group algebras k[Z n ] via an action on Z n .
متن کاملLocal Rings of Finite Cohen-macaulay Type
Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...
متن کاملLyubeznik Table of Sequentially Cohen-macaulay Rings
We prove that sequentially Cohen-Macaulay rings in positive characteristic, as well as sequentially Cohen-Macaulay Stanley-Reisner rings in any characteristic, have trivial Lyubeznik table. Some other configurations of Lyubeznik tables are also provided depending on the deficiency modules of the ring.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1982
ISSN: 0021-8693
DOI: 10.1016/0021-8693(82)90248-4